



133 Molesworth Street PO Box 5013 Wellington 6140 New Zealand T+64 4 496 2000

13 November 2024

Ref: H2024053872

Tēnā koe <sup>\$ 9(2)(a)</sup>

#### Response to your request for official information

Thank you for your request under the Official Information Act 1982 (the Act) to the Ministry of Health – Manatū Hauora (the Ministry) on 15 October 2024 for information regarding the outcomes on options to improve ventilation. You requested:

- 1. What is the current progress on the actions in Group A, planned for 2024?
- 2. Has the Ministry received feedback from the Minister on Group B? If so, what was it?
- 3. Is there any further information on the costs and feasibility of the Group B actions?
- 4. What further work has been undertaken due to this briefing?
- 5. Please provide any reports, documents, or materials related to Options to Improve Ventilation generated since the briefing.

The attached four documents provide relevant updates to work undertaken to date to improve ventilation for the purposes of reducing risk of transmission of airborne pathogens. The documents and decisions regarding release are outlined in Appendix 1. Where information is withheld under section 9 of the Act, I have considered the countervailing public interest in releasing information and consider that it does not outweigh the need to withhold at this time.

As noted in document 4, the Ministry were intending to publish the National Institute of Water and Atmospheric (NIWA) research along with the updated guidance. However, upon processing this it became more practical to update the guidance on the Health New Zealand – Te Whatu Ora website immediately and publish the NIWA research on the Ministry's website. The NIWA research is currently being reformatted to be accessible and is expected to be published later this month.

If you wish to discuss any aspect of your request with us, including this decision, please feel free to contact the OIA Services Team on: <a href="mailto:oiagr@health.govt.nz">oiagr@health.govt.nz</a>.

Under section 28(3) of the Act, you have the right to ask the Ombudsman to review any decisions made under this request. The Ombudsman may be contacted by email at: <a href="mailto:info@ombudsman.parliament.nz">info@ombudsman.parliament.nz</a> or by calling 0800 802 602.

Please note that this response, with your personal details removed, may be published on the Manatū Hauora website at: <a href="www.health.govt.nz/about-ministry/information-releases/responses-official-information-act-requests">www.health.govt.nz/about-ministry/information-releases/responses-official-information-act-requests</a>

Nāku noa, nā

Dr Andrew Old

Deputy Director-General

Public Health Agency | Te Pou Hauora Tūmatanui

Appendix 1: List of documents for release

| #  | Date                          | Document details                                                                                                                     | Decision on release                                                                                                                                                                          |
|----|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | 21 March 2024                 | Briefing: Options to improve ventilation (H2024036633)                                                                               | Refused in full under section 18(d) of the Act as the information requested is publicly available here:  www.health.govt.nz/information-releases/advice-to-the-minister-of-health-march-2024 |
| 2  | 13 August 2024                | Aidé-Memoire: Update on work<br>to improve ventilation<br>(H2024040351)                                                              | Refused in full under section 18(d) of the Act as the information requested will soon be publicly available here:  www.health.govt.nz/information-releases                                   |
| 3  | 15 August – 29<br>August 2024 | Email correspondence:<br>Collecting air quality data                                                                                 | Some information is withheld under section 9(2)(a) of the Act, to protect the privacy of natural persons.                                                                                    |
| 4  | 1 October 2024                | Internal Ministry Memo: Update<br>on the Public Health Agency's<br>Ventilation work programme                                        | Released in full.                                                                                                                                                                            |
| 4A |                               | Appendix 1: Updated ventilation guidance                                                                                             | Refused in full as the information requested is publicly available here: info.health.nz/keeping-healthy/environmental-health/ventilation                                                     |
| 4B |                               | Appendix 2: NIWA publication for<br>the Ministry – Clearing the Air:<br>Assessing real world ventilation<br>practices in New Zealand | Released in full.                                                                                                                                                                            |

From: Andrew Old

Sent: Thursday, 29 August 2024 3:10 pm
To: Clare Possenniskie; Nicholas Jones

Cc: Daniel Martin; Kristie Carter

**Subject:** RE: Seeking your views: ventilation work

Thanks Clare,

I think your instincts re further research (at this time) are correct. If we can progress the updated guidance, and work with the various sectors as noted, I think that's appropriate.

Ngā mihi,

Andrew

**Dr. Andrew Old** (he/him)

Deputy Director-General

Public Health Agency | Te Pou Hauora Tūmatanui
+64 4 466 5542 | andrew.old@health.govt.nz

*H*ĕKĕKĕKĕKĕKĕKĕKĕKĕKĕKĕKĕKĕKĕK

From: Clare Possenniskie < Clare. Possenniskie@health.govt.nz>

Sent: Tuesday, August 27, 2024 5:19 PM

**To:** Andrew Old <Andrew.Old@health.govt.nz>; Nicholas Jones <Nicholas.Jones@health.govt.nz> **Cc:** Daniel Martin <Daniel.Martin@health.govt.nz>; K istie Carter <Kristie.Carter@health.govt.nz>

**Subject:** Seeking your views: ventilation work

Kia ora kōrua

Would appreciate your direction on next steps regarding ventilation work.

As you know, we recently provided an upda e to the Minister on the ventilation work. In this we advised that we would do further work on investigating the costs and feasibility of collecting anonymised data to develop a better sense of the relative risk profiles in different settings (this was a follow on action from the previous briefing earlier this year).

We have now received the report from NIWA which tested the collection of data in a range of settings and interventions. Among the conclusions were:

- our study implies that indoor air quality and ventilation performance in naturally ventilated buildings varies between buildings and between rooms within buildings in a way that may be predictable but also may not. It indicates that some rooms present a greater risk and may deserve to be prioritised for mitigation, but it may be difficult to identify such locations in advance; and
- Our attempt to conduct a structured and deliberate behavioural intervention to improve ventilation
  practices was inconclusive. In our view this reflects flaws in the design, partly related to the difficulty in
  constructing a design that was sufficiently adaptable to the wide range of buildings, workplace, social and
  ethnic cultures across the participating centres.

Following receipt of the NIWA report we are working to update the ventilation guidance currently on HNZ's webpage <a href="https://info.health.nz/keeping-healthy/environmental-health/ventilation#:~:text=Open%20windows%20or%20doors%20on,windows%20wider%20than%20lower%20windows.">https://info.health.nz/keeping-healthy/environmental-health/ventilation#:~:text=Open%20windows%20or%20doors%20on,windows%20wider%20than%20lower%20windows.</a>

After we have published our updated guidance we will draft up letters to RNZCGPs, NZTA, etc to inform them of the new guidance, offer simple solutions to improve ventilation and offer support for them to produce updated messaging for their sectors.

The question is next steps from here. Dan has done some investigating and discussed with Jeremy Tuohy in ERI, Sidd in ISK and others and identified 2 options. He provides more detail in his email below, but in summary:

- 1. We could put in a bid through the ERI research fund to do further studies, building on the NIWA work. This could provide us with more data to help us focus on key areas to target, but would require significant resourcing including within ISK (Kristie FYI). And is the purchase of CO2 monitors and setting up a system of monitoring them a priority for the Ministry (even if the initial outlay was funded through ERI)?
- 2. We could close this action off with the Minister noting that we have received the NIWA report which provides an initial snapshot of what areas are worse for ventilation, note that the report had limitations and any subsequent research would need to build on, and that future research is not realistic within the PHA's other priorities at this stage.

My inclination is towards 2 as I think there are other more pragmatic things we can do in the ventilation space (such as the guidance) and following the NIWA report Im not confident on the return on further investment in research in this space. But I welcome your views and thoughts.

CP

#### Clare Possenniskie (she/her)

Manager | Public Health Policy & Regulation Group Public Health Agency | Te Pou Hauora Tūmatanui \$ 9(2)(a)

clare.possenniskie@health.govt.nz





From: Daniel Martin < Daniel. Martin@health.govt.nz>

Sent: Tuesday, August 27 2024 4:10 PM

**To:** Clare Possenniskie < <u>Care.Possenniskie@health.govt.nz</u>>

Cc: Sidd Mehta <Siddhartha.Mehta@health.govt.nz>

Subject: RE: Collecting air quality data

Hi Clare,

Following this up I h ve had a few scoping discussions with Sidd in ISK and an informal chat with StatsNZ on what this work migh loo like going forward. We're at inflection point on where we go to next and I'm after some direction on what our next steps should be.

#### In progress

We are currently working up the ventilation guidance. I have drafted this up and it has been reviewed by ERI/ODPH/yourself. Just waiting to hear back from Nick J and then will send it to MoE to ensure it is consistent with their messaging. After this it will go to prevention for their review and upload to info@health (which is HNZ's website).

After we have published our updated guidance I will draft up some letters for Andrew to send to:

- HealthCERT
- Royal New Zealand College of General Practitioners

- NZTA
- Any other sector groups Nick/Andrew want to engage.

These letters will inform of the new guidance, offer simple solutions to improve guidance and offer to support them in producing updated messaging for their sectors.

#### **Collecting Further Data**

The last piece of work from the March briefing for us to address is to 'investigate the costs and feasibility of working with willing agencies/sectors to collect anonymised data to develop a better sense of the relative risk profile of different settings'. In this space we recently received the NIWA produced report (from the ERI fund) which collects data in a range of settings and then tests interventions. This could be a pilot to any further work and produces some initial results and highlights the issues/challenges with undertaking this sort of study.

#### **Next Steps**

I see 2 options for this going forward depending on what the PHA's priorities and appetite is to continue this work.

#### 1. Put in another ERI bid and work with ISK to lead further research

To do this we would need to:

- Reach out to ISK for them to lead an ERI bid and work with me in scoping up the research | Junderstand Jonathan, KD and Fiona are currently across the ventilation work in ISK
- Submit another bid with the ERI fund for this research. Note that the research and data collection would need to be lead out of ISK.
- Reach out to priority sector groups (listed above and likely HNZ as well) invi ing them to be part of our trial. Ideal areas for a trial would be:
  - High risk of spread/and or vulnerable population
  - Have easy ways to improve ventilation.

So for example a rural/suburban GP clinic which are often epurposed bui dings with openable windows would be ideal, whereas a GP in an office building would have no way practicable way to improve results.

**This would** provide interesting results in where we should focus our energy with ventilation and allow us to work closely with key stakeholders on improving ta geted areas (think GP's, primary care, public transport etc).

**However**, it does have significant resourcing required Include policy resource, ISK resource, ERI funding and would continue to have ventilation as a priority piece of work for the PHA.

#### 2. Close this rec off with the Minister

To do this we would notify the Minister (weekly report?) that:

- We received the NIWA report which provides an initial snapshot of what areas are worse for ventilation.
- Note that this report had limitations and any subsequent research would need to build on.
- State that any future research is not realistic within the PHA's other priorities at this stage.

We would also probably want to publish the NIWA study to tie this all off.

Let me know your thoughts on how you want to advance this?

Thanks! Dan

From: Daniel Martin

**Sent:** Thursday, August 15, 2024 11:13 AM

**To:** Clare Possenniskie < <u>Clare.Possenniskie@health.govt.nz</u>> **Cc:** Sidd Mehta < Siddhartha.Mehta@health.govt.nz>

Subject: Collecting air quality data

Hi Clare,

Just providing an update on the ventilation work. In the August update we recommitted to:

'The Ministry has not yet progressed work in this area but will investigate options for funding research, including through its own Research and Evaluation Fund. This fund supports evidence-informed policy and decision-making.'

I've had a chat with Sidd, who has been successful in the past securing funding for ISK through ERI, about the process and how we might go about it.

#### A few thoughts on this:

- The next funding round is in October so this is a good time to be having these discussions.
- Sidd suggested we talk with Stats NZ on this and see what work they are doing and if they would be an appropriate provider for this going forward.
- He has also provided previous templates for us to work from and inform what a good bid looks like.

#### **Next Steps:**

- Sidd and I will meet with Stats NZ next week to understand how/if this would fit in with their current work. If it does not we would like put it out for tender.
- Once we have a direction I will have a chat with ERI and socialise the idea.
- We will then prepare the bid.

Be great to get your thoughts on this and if you are comfortable with this approach. Also let me know if I need to discuss this with any of Jane/Nick/Kristie/Andrew before we go to far down this path.

Many Thanks!

### Daniel Martin (he/him)

Senior Policy Analyst
Public Health Agency |Te Pou Hauora Tūmatanui | Manatū Hauora
133 Molesworth Street
Thorndon, Wellington 6011















# Memo

# **Update on the Public Health Agency's Ventilation work programme**

| Date:     | 1 October 2024                                                                                                      |  |  |
|-----------|---------------------------------------------------------------------------------------------------------------------|--|--|
| То:       | Ross Bell, Acting Deputy Director-General, Public Health Agency – Te Pou Hauora<br>Tūmatanui                        |  |  |
| Copy to:  | Dr Nicholas Jones, Director of Public Health, Public Health Agency - Te Pou Hauora<br>Tūmatanui                     |  |  |
| From:     | Jane Chambers, Group Manager, Public Health Policy and Regulation Public Health<br>Agency - Te Pou Hauora Tūmatanui |  |  |
| For your: | Decision                                                                                                            |  |  |

# **Purpose of report**

- 1. This memo provides you with an update following the aide memoire *Update on work to improve ventilation* [H2024040351 refers and seeks your agreement to:
  - a. updated ventilation guidance (appendix 1) and
  - b. the publication of r search from the National Institute of Water and Atmospheric Research (NIWA) (appendix 2) on Health New Zealand's (Health NZ's) website.

# **Background and context**

- 2. On 13 August 2024 we provided the Minister of Health, Hon Dr Shane Reti, with an update on ventilation work [H2024040351 refers].
- 3. In this briefing we advised that the Ministry of Health (the Ministry) was working to update public guidance on ventilation, but that this had been delayed due to research from NIWA that was expected in May 2024 not yet having been received.

#### The NIWA research has since been received

- 4. The Ministry received the research we commissioned from NIWA 'Clearing the Air: Assessing real-world ventilation practises in New Zealand on 21 August (appendix 2). This research provides an evidence base for our guidance and supports the work done by Ministry of Education (MoE) to help set recommended levels.
- 5. As Health NZ has already provided guidance on ventilation on its website, we are updating this existing guidance to incorporate the recent research, and to be more specific on suitable ventilation levels.
- 6. Having consulted within the Public Health Agency (PHA), Evidence Research and Innovation Health NZ, and the MoE we have also made some changes to clarify the guidance and make





it consistent with work done by MoE. The current guidance with proposed changes is in **appendix 1.** 

7. When we update the guidance, we also intend to publish the NIWA study alongside it to provide in depth information for anyone wanting to understand the issue further.

# **Next Steps**

- 8. The Ministry will work with Health NZ to publish the updated guidance and NIWA research on their website. Once published, we will notify the Minister of Health via a weekly report entry.
- 9. Following this, we will draft letters for the Deputy Director-General, PHA to send to HealthCERT, The Royal New Zealand College of General Practitioners, New Zealand d Transport Authority, and any other sector groups of interest, notifying the changes to our guidance and promoting improved ventilation.





# **Recommendations**

It is recommended that you:

| 1. | note  | we committed to updating public guidance on ventilation                                                                                                                                                                                                                                     | Noted |
|----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 2. | note  | the Ministry of Health commissioned a research project from the National Institute of Water and Atmospheric Research (NIWA) on reducing the risk of COVID-19 infections in buildings by implementing low-cost options to improve ventilation and this report was received on 21 August 2024 | Noted |
| 3. | note  | we have reviewed and updated existing guidance on Health NZ's website to incorporate findings from the NIWA research and feedback from key agencies                                                                                                                                         | Noted |
| 4. | agree | to the updated guidance ( <b>appendix 1</b> ) being published on Health NZ's website                                                                                                                                                                                                        | Yes   |
| 5. | agree | to the NIWA research Clearing the Air: Assessing real-world ventilation practises in New Zealand (appendix 2 being published alongside the updated guidance                                                                                                                                 | Yes   |
| 6. | note  | we will write to key stakeholders promoting our updated guidance                                                                                                                                                                                                                            | Noted |
| 7. | note  | we will update the Minister of Health on the progress through a weekly report entry                                                                                                                                                                                                         | Noted |

Signature Ross Bell \_Date: 1 October 2024

Acting Deputy Director-General Public Health Agency



# Clearing the Air

Assessing real-world ventilation practices in New Zealand

Prepared for Ministry of Health

August 2024



#### Prepared by:

Ian Longley

#### For any information regarding this report please contact:

Ian Longley

Programme Leader - Air Quality

+64 9 375 2096

i.longley@niwa.co.nz

National Institute of Water & Atmospheric Research Ltd Private Bag 99940 Auckland 1149

Phone +64 9 375 2050

NIWA CLIENT REPORT No: 2024251AK
Report date: August 2024
NIWA Project: MOH23101

| Revision    | Description                    | Date           |
|-------------|--------------------------------|----------------|
| Version 0.1 | Draft in preparation/in review | 5/9/2024       |
| Version 1.0 | Final version sent to clie     | Day Month Year |
| Version 1.1 | Amendments to sections xxx     |                |

| Quality Assurance Statement |                          |                                                  |  |  |
|-----------------------------|--------------------------|--------------------------------------------------|--|--|
| (gloSon)                    | Reviewed by:             | Guy Coulson<br>Principal Scientist - Air Quality |  |  |
|                             | Formatting checked by:   |                                                  |  |  |
| J.P. Hooves                 | Approved for release by: | Jonathan Moores<br>Regional Manager Auckland     |  |  |

© All rights reserved. This publication may not be reproduced or copied in any form without the permission of the copyright owner(s). Such permission is only to be given in accordance with the terms of the client's contract with NIWA. This copyright extends to all forms of copying and any storage of material in any kind of information retrieval system.

Whilst NIWA has used all reasonable endeavours to ensure that the information contained in this document is accurate, NIWA does not give any express or implied warranty as to the completeness of the information contained herein, or that it will be suitable for any purpose(s) other than those specifically contemplated during the project or agreed by NIWA and the client.

# **Contents**

| Exec | utive s | summary 5                                                                                                                |
|------|---------|--------------------------------------------------------------------------------------------------------------------------|
| 1    | Intro   | oduction7                                                                                                                |
|      | 1.1     | Background7                                                                                                              |
|      | 1.2     | The need8                                                                                                                |
|      | 1.3     | The Project9                                                                                                             |
|      | 1.4     | Scope of this report9                                                                                                    |
| 2    | Meth    | nod11                                                                                                                    |
|      | 2.1     | General approach11                                                                                                       |
|      | 2.2     | Stages of the project                                                                                                    |
|      | 2.3     | Recruitment of centres                                                                                                   |
|      | 2.4     | Fieldwork procedure                                                                                                      |
|      | 2.5     | Choice of study rooms                                                                                                    |
|      | 2.6     | Monitoring variables, techniques and instrumentation13                                                                   |
|      | 2.7     | Intervention design and limitations                                                                                      |
|      | 2.8     | Outcome statistics                                                                                                       |
| 3    | Resu    | lts                                                                                                                      |
|      | 3.1     | Coverage                                                                                                                 |
|      | 3.2     | Carbon dioxide                                                                                                           |
|      | 3.3     | Observed changes in door and window usage                                                                                |
| 4    | Disc    | ussion 28                                                                                                                |
|      | 4.1     | The state of ventilation in naturally ventilated buildings occupied by vulnerable persons                                |
|      | 4.2     | The potential for improving ventilation through changes in ventilation behaviour                                         |
|      | 4.3     | The potential for using carbon dioxide monitoring data to promote pro-ventilation behaviour change                       |
| 5    | Conc    | clusions                                                                                                                 |
|      | 5.1     | What does this study say about the state of ventilation in New Zealand's naturally ventilated non-residential buildings? |
|      | 5.2     | What does this study say about the potential of behavioural intervention?31                                              |

| 6      | Impli  | cations                                                                                                                                                     | 33        |
|--------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|        | 6.1    | Identifying spaces that require mitigation                                                                                                                  | 33        |
|        | 6.2    | Is low-cost behavioural intervention a viable mitigation approach?                                                                                          | 33        |
|        | 6.3    | What might be an appropriate role for sensor-based monitoring?                                                                                              | 34        |
| 7      | Ackno  | owledgements                                                                                                                                                | 35        |
| Table: | S      |                                                                                                                                                             |           |
| Table  | 2-1:   | Stages of the project.                                                                                                                                      | 11        |
| Table  | 2-2:   | Number of centres monitored by type for each stage of the project.                                                                                          | 12        |
| Table  | 3-1:   | Distribution of monitoring durations across all centres.                                                                                                    | 17        |
|        |        |                                                                                                                                                             |           |
| Figure | es     |                                                                                                                                                             |           |
| Figure | 2-1:   | Two Qingping Air Monitor Lites of the type used to monitor CO <sub>2</sub> in this study.                                                                   |           |
|        |        |                                                                                                                                                             | 13        |
| Figure |        | A magnetic opening sensor of the type used in the study.                                                                                                    | 14        |
| Figure |        |                                                                                                                                                             | 15        |
| Figure | 2-4:   | Example of a "calendar" style plot of CO <sub>2</sub> data provided to all participants and discussed during the intervention meeting.                      | d<br>15   |
| Figure | 9 3-1: | Rooms ranked according to the ave age number of days (out of 10) during which $CO_2$ was elevated above 800 ppm for more than an hour.                      | 18        |
| Figure | 3-2:   | Rooms ranked by the median duration that CO <sub>2</sub> remained over 800 ppm.                                                                             | 18        |
| Figure | e 3-3: | Rooms ranked according to the average number of days (out of 10) during which CO <sub>2</sub> was elevated above 2000 ppm for more than quarter of an hour. | 19        |
| Figure | e 3-4: | The daily probability of exceeding an 800 ppm (1 hr) and 2000 ppm (15 mins) threshold for each room in the study.                                           | )<br>20   |
| Figure | e 3-5: | Box-and-whisker plot of the distribution of calculated risks of exceeding the short- and longer-term thresholds for each building type.                     | 20        |
| Figure | 3-6:   | Result of k-means cluster analysis.                                                                                                                         | 21        |
| Figure | 3-7:   | Time ser es of CO₂ from the "Spin" room - the only room in the High-Risk cluster.                                                                           | 22        |
| Figure | 3-8:   | Each days' time series of $CO_2$ from the "Spin" room - the only room in the Hig Risk cluster - overlaid.                                                   | gh-<br>22 |
| Figure | 3-9:   | Time series of $CO_2$ from a classroom in cluster 2.                                                                                                        | 24        |
| Figure | 3-10:  | Each days' time series of CO₂ from a cluster 2 classroom overlaid.                                                                                          | 25        |
| Figure | 3-11:  | Time series of $CO_2$ from a room in cluster 3.                                                                                                             | 26        |
| Figure | 3-12:  |                                                                                                                                                             | 26        |
| Figure | e 4-1: | Scatter plot of risk of exceeding 800 ppm for more than an hour (days per 10 days) in baseline and interventions period.                                    | 29        |

# **Executive summary**

Before the COVID-19 pandemic, ventilation in most spaces was primarily driven by the goal of preventing the excessive build-up of carbon dioxide in a room. The high transmissibility and deadly impact of the SARS-CoV-2 virus meant that achieving an acceptable degree of risk prevention required a much higher ventilation demand than most buildings or ventilation systems were designed for, and the actual degree of ventilation available in most indoor settings.

The majority of New Zealand's buildings are "naturally" ventilated, meaning they rely on the opening of windows (and/or doors) by occupants. Ventilation performance is a product of the ventilation potential – i.e. the presence, functionality and maintenance of the infrastructure available (mainly windows) - and the degree to which that potential is realised in practice, i.e. windows and doors are appropriately used. Ventilation habits are often inefficient, probably because we have a relatively poor innate sense of when a room is under-ventilated. Most members of the public under-estimate how effective windows can be in improving ventilation and air quality and reducing infection risk.

The widespread existence of windows that are rarely opened, o rarely fully opened, implies an untapped potential to increase the ventilation performance of buildings at little to no cost. However, during the height of the COVID-19 pandemic there was effectively no information on the state of ventilation in New Zealand's naturally ventilated buildings, how many (and which) buildings required mitigation, or what behavioural (versus infrastruc ural) interventions could achieve.

The project reported here was designed to:

- Assess the state of ven ilation (inferred from measurements of carbon dioxide) in a sample of mostly naturally ventil ted buildings occupied by people more vulnerable to the acute health effects of COVID 19 infection
- Explore the potential for improving ventilation through changes in ventilation behaviour
- Explore the potential for using carbon dioxide monitoring data to promote proventilation behaviour change.

This was achieved through the monitoring of carbon dioxide (CO<sub>2</sub>) in up to 4 rooms for periods varying from 14 to 78 days in 31 "centres". Centres consisted of an aged car centre, churches, community spaces, early childhood centres, schools, gyms, clinics, libraries, offices and veterinary clinics spread over Auckland, Christchurch and Alexandra (Otago).

The pe sistence of  $CO_2$  concentrations above 800 ppm for more than an hour is internationally recognised as an indicator of poor ventilation. We observed this to occur at least one day in 10 in 74 out of 99 studied rooms, and at least 5 days in 10 in 31 out of 99 rooms.

Overall, data we would consider representing very poor air quality with a high risk was not observed.

Less than 10 rooms posed a moderately high risk. This group was characterised by the room being somewhat under-ventilated relative to the ideal, but being periodically ventilated more effectively, or by occupancy reducing or ceasing. Such rooms will present a higher risk if these refresh breaks do not occur for whatever reason (e.g. inclement weather), or the duration between breaks increases.

Approximately a third of rooms had good air quality throughout the study.

This study did not yield a clear profile for the types of building, rooms, uses or infrastructure that would present the more important risk factors. However, we found that gyms and education spaces were slightly over-represented amongst those rooms with poorer air quality, whereas churches and offices were over-represented in the good air quality group.

Our attempt to conduct a structured and deliberate behavioural intervention to improve ventilation practices was inconclusive. In our view this reflects flaws in the design, partly related to the difficulty in constructing a design that was sufficiently adaptable to the wide range of buildings, workplace, social and ethnic cultures across the participating centres.

It was clear from the data that "natural" variation in ventilation practice produced wide variation in indoor air quality outcomes. In particular, the frequency and duration of door openings and the timing/frequency of window openings appeared to be the main factor determining whether on any given day, and for how long, carbon dioxide exceeded risk thresholds. Although an extended analysis of this dataset is required to quantify these relationships, the analysic conducted to date is sufficient for us to confidently state that the potential for behaviour change to improve ventilation and indoor air quality and reduce risk is large.

This study indicates that some rooms present a greater risk and may deserve to be prioritised for mitigation, but it may be difficult to identify such locations in advance. This implies several non-exclusive options:

- Adopt a precautionary approach and mitigate in as many settings as possible
- Develop a predictive screening approach to gather better suggestive evidence of high risk before prioritising rooms for mitigati n
- Conduct screening mon toring to gather more robust evidence of high risk before prioritising room for mitigation

### 1 Introduction

### 1.1 Background

In outdoor settings, and especially in New Zealand, the air tends to be constantly on the move, rapidly diluting any contamination. Amongst other things, this means (for example) smoke is dispersed, and we rarely re-inhale the air we, or those close to us, have just exhaled.

This is not the case indoors. In an enclosed space the air is trapped, contaminants accumulate, and before long occupants will be re-breathing each other's breath. We may sense the air becoming state or developing a smell. We may start to note condensation forming as humidity levels rise. Concentrations of any biological or chemical contaminants being released in the room may rise until they pose a risk to health. Rising levels of carbon dioxide from our own breathing can have ubtle neurological effects such as headaches and difficulty concentrating (Snow et al., 2019). If an airborne respiratory virus is being exhaled by an occupant, it will also increase its concentration over time increasing the risk of infection for any other person present.

In the vast majority of cases, the solution is to ventilate the space, i.e. to ensure a means by which the stale air is removed and replaced with fresh air. Many spaces will possess a small degree of "self-ventilation" through gaps under doors, through floorboards, etc. More commonly, ventilation is provided by windows, and also occurs whenever a door is open. Historically, the Building Code specifies a minimum area of openings for rooms to allow for ventilation to provide safety for occupants, and to protect the room from damage from damp (MBIE, 2019).

It should be noted that ventilation is often confused with air circulation and air conditioning. Using a fan in a hot room to create an air low with a cooling effect is recirculating the air, not ventilating the room, unless the fan accelerates the exchange of air between the room interior and exterior. Air conditioning refers to the deliberate change in the temperature or humidity of the air in a space, not its replacement.

This simple overview of ventilation assumes that the air being brought into a room is "fresh". Where that air is arriving rom an adj cent room this may not be the case. In these situations, supplying fresh air from outdoors is generally preferred. Whereas outdoor air is highly unlikely to be contaminated with indoor-sourced pollutants (carbon dioxide, viruses, some chemicals) to the same degree, it still may be contaminated with other pollutants, particularly emissions from road traffic in the case of buildings near major roads (in which case there is often a reluctance to open windows because of noise as well). In such cases ventilation will often still be preferable to no ventilation, although additional measures may be required to deliver fresh air to the room, such as ensuring outside air is drawn from a less polluted façade of the building, or that the air is filtered.

The degree of ventilation required depends upon the risk posed, which requires consideration of the likelihood of the presence of a contaminant, its rate of emission, its toxicity, the volume of the room, the vulnerability of the exposed, and the duration of their exposure.

Before the COVID-19 pandemic, ventilation in most spaces was primarily driven by the goal of preventing the excessive build-up of carbon dioxide in a room, with more demanding objectives in place in some high-risk settings like surgical theatres, kitchens and industrial facilities. SARS-CoV-2 is predominantly transmitted indoors via exhaled aerosols. In 2020 Its high transmissibility and deadly impact meant that achieving an acceptable degree of risk prevention required a much higher

ventilation demand than most buildings or ventilation systems were designed for, and the actual degree of ventilation available in most indoor settings.

In some well-resourced buildings (especially offices) mechanical ventilation systems are provided to ensure a set level of ventilation. In these buildings, to a first approximation, good ventilation can be assumed (although poorly maintained systems do occur), and such systems can often be adjusted to provide higher ventilation rates if and when required.

However, the majority of New Zealand's buildings are "naturally" ventilated, meaning their ventilation relies on the opening of windows and/or doors by occupants. In these buildings the degree to which a space is ventilated is a product of the ventilation potential – i.e. the presence, functionality and maintenance of the infrastructure available (mainly windows) - and the degree to which that potential is realised in practice, i.e. whether the infrastructure is used effectively, i.e. the window and door opening behaviour by occupants. Ventilation habits are often inefficient, probably because we have a relatively poor innate sense of when a room is under-ventilated (window-opening behaviour is mainly driven by our more actute sense of thermal comfort and noise). However, anecdotal evidence captured by the authors indicates that many (maybe most) members of the public, including teachers, under-estimate how effective windows can be in improving ventilation and air quality, and reducing infection risk.

The widespread existence of windows that are rar ly o ened, or rarely fully opened, implies an untapped potential to increase the ventilation performance of buildings at little to no cost. This realisation formed a core principle of the Ministry of Education's COVID-19 Response - Ventilation Programme (CRVP). Beginning in early 2022 and working alongside a Technical Advisory Group (TAG) including the author of this report, the CRVP provided all schools with guidance and tools to improve ventilation in the ~31,000 naturally ventilated classrooms across NZ, with the primary focus being on increasing the opening of windows. The main tool was the provision of 12,000 carbon dioxide (CO<sub>2</sub>) monitors distributed to schools at zero cost to them. Teachers were supported to evaluate the impact of using windows, for and portable air cleaners on CO<sub>2</sub> (as a proxy for infection risk), thus realising their own agency, and then to share their learning with peers. Anecdotal evidence indicates that, despite some initial scepticism or lack of awareness, some teachers achieved large improvements in ventilation through small changes in practice, with the CO<sub>2</sub> monitor being key to providing robust, quantita iv and sharable data. However, uptake of the initiative was low or short-lived overall.

#### 1.2 The need

When preparations were being made to permanently re-open New Zealand's schools after COVID-19 lockdowns in spring 2021, it was not known at the time what the state of ventilation (or indoor air quality) was across the more than 30,000 classrooms in New Zealand. It was also not known how much potential there was to improve ventilation, by how much and where by encouraging more effective use of existing infrastructure or whether risk reduction could be achieved by infrastructural versus behavioural interventions, where each approach should be best targeted, and what costs that would impose. This made it very difficult to ascertain the risk posed by allowing staff and students to once again congregate in school buildings while the virus was still prevalent and vaccination rates still low. The same situation broadly applied to most New Zealand buildings.

Māori and Pacific people have disproportionately high rates of many of the conditions that are risk factors associated with critical COVID-19 cases and death, including heart disease (Māori are more

than twice as likely to die and 1.5 times as likely to be hospitalised for cardiovascular disease and diabetes (9.8% and 15.4% respectively). Māori and Pacific people are also more likely to live in crowded accommodation (StatsNZ, 2018) and disease transmission may therefore be higher for Māori and Pacific families, as self-isolation is more difficult. Māori are already over-represented in hospitalisations for respiratory illness, being 2.2 times more likely to be hospitalised than New Zealand Europeans (Telfar-Barnard and Zhang, 2021). Finding potential areas to mitigate or reduce the risk of COVID-19 transmission are vitally important tools in improving Māori health outcomes now and in future pandemics.

Commercial, industrial and high-value buildings are more likely to have mechanical HVAC system, some of which may have been re-optimised to reduce transmission of SARS-CoV-2 (where the e was access to HVAC expertise and an understanding of the issue). Conversely, lower-value buildings and less-resourced owners are more likely to rely on the practice of natural or pa sive ventilation – predominantly the opening of windows. In many cases the awareness of the need for, and efficacy of window opening is lacking. Together these factors lead to inequitable access to adequate ventilation.

Finding potential areas to mitigate or reduce the risk of COVID 19 transmiss on are vitally important in ensuring that health inequalities do not widen further now or during future pandemics.

## 1.3 The Project

The project reported here aimed to:

- Assess the state of ventilation (inferred from measurements of carbon dioxide) in a variety of mostly naturally vent lated buildings occupied by people more vulnerable to the acute health effects of COVID-19 infection
- Explore the potential fo improving ventilation through changes in ventilation behaviour
- Explore the potential for using carbon dioxide monitoring data to promote proventilation behaviour change.

Poorly ventilated paces that act as nodes for social contact in a community can be responsible for a large number of downstream infections by facilitating "superspreader" events. The combination of vulnerable persons congregating in under-ventilated spaces means that homes, age-care facilities, healthcare spaces c assrooms, early childhood centres and places of worship may present a high risk, as well as under-resourced spaces and spaces where high breathing rates (like gyms) are common. In this project these types of potentially high-risk locations were prioritised for study.

#### 1.4 Scope of this report

The approach taken to meeting the project objectives was observational. A very large dataset of physical measurements was created from observations in a sample of 99 different rooms, lasting between 14 and 78 days per room. This dataset includes approximately 5 million measurements of carbon dioxide concentrations.

Despite the dataset's size it is a very small sample relative to the total population of rooms that exist across the country with each sample being during one season only. Considering the large number of variables influencing indoor air quality and ventilation behaviour this dataset must be considered to be a "snapshot" and general representativeness is unlikely.

This report focusses on characterising this dataset to describe indoor air quality as observed in the rooms during each sampling period. In our view the dataset is still too limited to fully explain the observed air quality – in particular to infer the combination of activity and ventilation that led to the air quality outcome. This could potentially be achieved for some rooms where data coverage was more comprehensive, or the processes somewhat simpler, but has not been possible with the limited resources available to date.



## 2 Method

## 2.1 General approach

The core of our approach was to monitor indoor air quality (represented by concentrations of carbon dioxide, or CO<sub>2</sub>) in rooms for a period of approximately two weeks or more. Carbon monoxide levels are an outcome indicator that result from the combination of an emission (breathing) into a room and its ventilation. High levels of carbon dioxide imply low levels of ventilation. As carbon dioxide in most indoor spaces derives from breathing (combustion being the other potentially significant source in a limited number of spaces) it can also act as a proxy for an exhaled aerosolised pathogen.

As well as some other explanatory variables, the monitoring of CO<sub>2</sub> was conducted in up to 4 rooms in a selection of recruited "centres" – a centre being a clinic, place of workshop, education centre, etc. 33 centres were covered during the project.

To address the objectives of exploring the potential to improve ventilation (and hence air quality) an intervention was included into the initial study design. This is described in more detail below, but in brief consisted of a baseline monitoring period followed by information feedback and a post-intervention monitoring period. However, practical difficulties of consistent implementation across a broad range of variables such as room size conectedne s, layout and number of openings, and availability of monitoring devices was very challenging meaning that the implementation was inconsistently implemented.

Ventilation actions were monitored indirectly through sensor based monitoring of the opening/closing of selected doors and windows (up to 5 per centre, as practical). Otherwise, in part due to their complexity, ventilation behaviours (and behavioural intentions) were not systematically captured, other than anecdotally.

## 2.2 Stages of the project

The project consisted of four sub-pr jec s, as summarised in Table 2-1. The "extended" stage was intended to explore the potential for multiple iterative interactions between scientists (and monitoring data) and centre staff and to explore long-term changes in behaviour and air quality.

Table 2-1: Stages of the project.

| Stage    | Location                    | Number of centres | From      | to        |
|----------|-----------------------------|-------------------|-----------|-----------|
| Pilot    | Auckland                    | 4                 | 1-Nov-22  | 4-Feb-22  |
| 1        | Auckland                    | 11                | 1-Mar-23  | 7-Jul-23  |
| 2        | Christchurch/Selwyn         | 9                 | 10-Jul-23 | 18-Sep-23 |
| 3        | Alexandra, Otago            | 7                 | 6-Sep-23  | 23-Nov-23 |
| Extended | Kokiri Marae, Lower<br>Hutt | 2                 | 20-Apr-23 | 22-Nov-23 |

# 2.3 Recruitment of centres

Centres were recruited by direct invitation by telephone. In the Auckland stage, personal and community contacts were extensively used.

There were no strict criteria, other than the centre consisted of a relatively small building or cluster of buildings and was likely to be regularly used by any of the following groups:

- Children
- The elderly
- Anyone suffering from acute or chronic health problems
- Māori or Pacific peoples

Centres with mechanical ventilation systems were generally avoided but two were included.

Table 2-2: Number of centres monitored by type for each stage of t e project.

| Centre type            |       | Project stage |   |   |          |       |
|------------------------|-------|---------------|---|---|----------|-------|
|                        | Pilot | 1             | 2 | 3 | Extended | total |
| Aged care              |       |               |   | 1 |          | 1     |
| Church                 | 1     | 2             |   |   |          | 3     |
| Community space        |       | 4             |   |   |          | 4     |
| Early Childhood Centre | 1     |               |   | 1 |          | 2     |
| Other Education space  |       |               | 1 | 4 |          | 5     |
| Gym                    |       |               | 2 |   |          | 2     |
| Healthcare             | 1     | 1             | 1 | 1 |          | 1     |
| Library                |       |               | 3 |   |          | 3     |
| Office                 | 1     | 1             |   |   | 2        | 4     |
| Veterinary clinic      |       |               | 2 |   |          | 2     |

# 2.4 Fieldwork procedure

The project team consisted of two groups:

- Air Quality Scientists mainly responsible for study design, data analysis and communication of results to participants
- Field Research Assistants mainly responsible for interactions with centres, including recruitment and instrument deployment.

Each centre was invited to participate for approximately 4 weeks, focussing on three interactions with project members. The first interaction was to allow a Field Research Assistant to visit the centre,

deploy instrumentation and record metadata. The second interaction typically involved the Field Research Assistant visiting the centre in person to host a meeting with one or more Scientists joining online. This constituted the "intervention". The nature of the intervention was variable across the project to allow for differences in people, operatoinal structures and building arrangements across centres, but in brief consisted of informational feedback on observed air quality to that point, and discussion of potential changes in ventilation behaviour. The third interaction consisted of the removal of all instrumentation by the Field Research Assistant and a "de-brief" discussion with centre staff to review the success (or otherwise) of any changes in behaviour. On some occasions a Scientist also joined these discussions online.

In one centre – Kokiri Marae – the monitoring was kept in place over several months, with several ad hoc discussions with centre staff. At the time of writing, data from Kokiri Marae are still be ng analysed and will be presented elsewhere.

# 2.5 Choice of study rooms

We had 4 air quality monitors available per centre. Each monitor needed to be within Wi-Fi range of our central control computer.

At the initial visit of the Field Research Assistant to the centre, a decision was made to allocate the monitors to specific rooms. Every centre was unique requiring some flexibility. However, in general, one monitor each was allocated to rooms which posed the greatest risk (of stale air or high occupancy), in the combined view of the centre staff and the Field Research Assist. Once deployed the monitors generally remained in place for the duration of that centre's participation. In afew centres, monitors we re-located to new rooms where the originally chosen rooms were shown to have particularly good air quality during the baseline period.

#### 2.6 Monitoring variabe, techn ques and instrumentation

#### 2.6.1 CO<sub>2</sub>

Carbon dioxide was measured using the Qingping Air Monitor Lite. Data was recorded at either 1-minute or 15-minute averages, collated using a local computer (Raspberry Pi) over Wi-Fi, and stored in the cloud.



Figure 2-1: Two Qingping Air Monitor Lites of the type used to monitor CO<sub>2</sub> in this study.

#### 2.6.2 Window and door openings

The opening and closing of selected doors and windows were monitored using magnetic and Wi-Fi-enabled sensors. The number of available sensors was typically much less than the number of openable doors and windows in each studied room. Therefore, a choice had to be made to monitor those which were most likely to be used (established in conversation with centre staff). This inevitably means that this data set is not a complete record of the opening of all doors and windows in the studied rooms. These sensors also generate only a binary signal – open or closed – and provide no information on the degree of opening, which has a large impact on the degree of ventilation.



Figure 2-2: A magnetic opening sensor of the type used in the tudy.

#### 2.7 Intervention design and limitations

The intended purpose of our intervent on approach was to attempt to induce increased ventilation behaviour mainly through the sharing and discussion of baseline monitoring data.

The intervention was targeted at people who felt they had at least some responsibility for the ventilation of the spaces being studied, although it was often difficult for the research team to judge who this might be, especially in advance of a visit. The allocation or sharing of responsibilities varied substantially between centres. We therefore required that the three interactions involved at least one consistent member of staff, but that other staff were invited.

Participants were empowered to interact with baseline monitoring data in three ways:

- Provision of a real-time "traffic light" dashboard specifically designed for the project and delivered on a tablet computer loaned to each centre for the duration of their participation (Figure 2-3). The dashboard presented a green light for CO<sub>2</sub> levels below 800 ppm, yellow for 800 2000 ppm and red for CO<sub>2</sub> above 2000 ppm for each of the four rooms being monitored. This was primarily provided to prompt ventilation action when the indicator turned yellow or red, and to give feedback on the success of that action (indicator returned to green), or otherwise (stayed yellow/red)/
- Provision of summary "calendar" plots of data at the intervention meeting (Figure 2-4). These plots record the history of the colours depicted on the dashboard for the previous week. This format allows time-based patterns (e.g. CO<sub>2</sub> always peaks between 10 and 11 am) to be easily discerned.

 Discussion of the calendar plots between the participants and Field Research Assistants (and Scientists in some cases).



**Figure 2-3:** The real-time data dashboard. The f ur panels visualise live CO<sub>2</sub> data from the four sensors (one each in different rooms).



Figure 2-4: Example of a "calendar" style plot of CO<sub>2</sub> data provided to all participants and discussed during the intervention meeting. This format allows time-based patterns to be discerned - in this case (from a classroom) day-to-day differences in classroom usage during breaks and lunchtimes can be identified.

#### 2.8 Outcome statistics

Carbon dioxide is widely used as an indicator of infection risk associated with airborne transmission of infectious diseases, and the risk posed by other indoor-sourced airborne contaminants.

We follow a common convention in exposure risk evaluation, particularly common in occupational exposure, of adopting a higher concentration threshold over a shorter time period and a lower concentration threshold over a longer time period to broadly represent two modes of exposure (more acute and more gradual).

For concentration limits, we have adopted 800 ppm and 2000 ppm. These values are widely used internationally, and within New Zealand, particularly, for instance, in the guidance provided for the design and management of school classrooms by the Ministry of Education (MoE, 2022). Once a background concentration of just over 400 ppm is allowed for, 2000 ppm rep esents 4 times more contamination of an indoor space than 800 ppm.

In practice, most of the rooms we studied tended to be continuously occupied either for periods of around 15 minutes (e.g. clinic consultation rooms), 60 minutes (e.g. some classrooms and gym spaces), or a few hours. We therefore adopt the time thresholds of 15 minutes and 1 hour to assess the higher and lower concentration thresholds respectively.

For each room (separately for baseline and interve tio where available), based on 15-minute average data, we calculated (and report below):

- The average number of days per 10-day pe iod, during which 15-minute mean CO<sub>2</sub> was continuously greater than > 800 ppm for >= 1 hour at least once during the day
- The median duration of over which CO<sub>2</sub> was continuously > 800 ppm
- The average number of days per 10-day period, during which 15-minute mean  $CO_2$  was greater than > 2000 ppm for at least one record (i.e. >= 15 minutes) at least once during the day
- The median duration of over which CO<sub>2</sub> was continuously > 2000 ppm
- Mean concent ation during nominal opening hours

## 3 Results

# 3.1 Coverage

Due to a range of instrument and logistical limitations we were not able to recover valid data from every room that was monitored. However, summary statistics were calculated for 99 rooms covering 31 centres. At the time of writing, data from the extended monitoring at Kokiri Marae are still being analysed and will be presented elsewhere.

The duration of monitoring in each centre varied more than was planned for due to logistical constraints (see Table 3-1).

Table 3-1: Distribution of monitoring durations across all centres.

|                             | Monitoring duration / days |
|-----------------------------|----------------------------|
| Minimum                     | 14                         |
| 25 <sup>th</sup> percentile | 23                         |
| 50 <sup>th</sup> percentile | 32                         |
| 75 <sup>th</sup> percentile | 45                         |
| Maximum                     | 78                         |

### 3.2 Carbon dioxide

#### 3.2.1 $CO_2 > 800 \text{ ppm for } > 1 \text{ hour}$

Of the 99 rooms considered,

- 80 experienced CO<sub>2</sub> le els above 800 ppm for more than one hour at some point dur ng the monitoring period
- 74 experienc d CO<sub>2</sub> levels above 800 ppm for more than one hour on more than one day during the monitoring period
- 31 (approx. one-third) experienced CO<sub>2</sub> levels above 800 ppm for more than one hour on more than half of all days during the monitoring period
- 7 experienced CO₂ levels above 800 ppm for more than one hour on 4 out of 5 days during the monitoring period.

These results are shown in Figure 3-1.

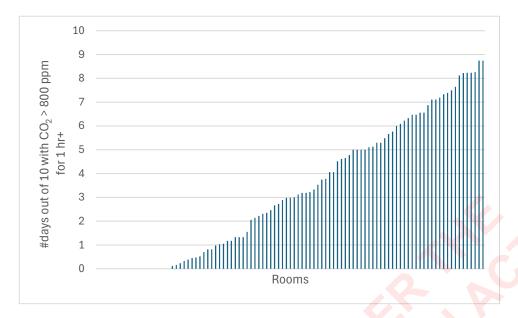



Figure 3-1: Rooms ranked according to the average number of days (out of 10) during which CO<sub>2</sub> was elevated above 800 ppm for more than an hour. Each bar is a room in the tudy. The space on the left represents rooms with zero risk.

The median duration that CO₂ remained over 800 ppm was 2 hours for all rooms.

For 13 rooms, CO<sub>2</sub> remained over 800 ppm for a median period of over 4 hours (Figure 3-2).

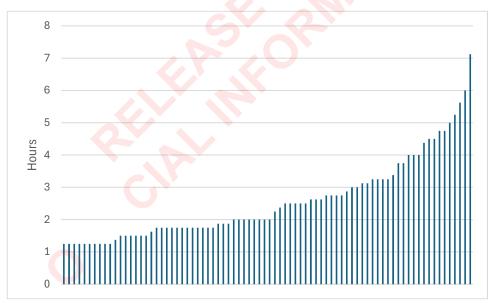



Figure 3-2: Rooms ranked by the median duration that CO<sub>2</sub> remained over 800 ppm. Each bar is a room in the study.

# 3.2.2 $CO_2 > 2000 \text{ ppm for } > \frac{1}{4} \text{ hour}$

Of the 99 rooms considered,

 27 (approximately one quarter) experienced CO<sub>2</sub> levels above 2000 ppm for more than one quarter of an hour at some point during the monitoring period

- 6 rooms experienced CO<sub>2</sub> levels above 2000 ppm on more than two days out of ten during the monitoring period
- Only one room experienced CO<sub>2</sub> levels above 2000 ppm on more than five days out of ten during the monitoring period.
- Only 3 rooms had CO<sub>2</sub> elevated over 2000 ppm for a median duration of more than an hour.

These results are shown in Figure 3-3.



Figure 3-3: Rooms ranked according to the average number of days (out of 10) during which CO<sub>2</sub> was elevated above 2000 ppm for mor than quarter f an hour. Each bar is a room. The large space on the left represents rooms with zero ri k.

In Figure 3-4 the daily probability calculated from our study of exceeding 2000 ppm for over 15 minutes and exceeding 800 ppm for over an hour for each room are plotted against each other. From this figure the following feeture are apparent:

- The risk of exceeding 800 ppm for more than an hour seems generally higher in this experimental data sample of rooms
- Some rooms appear to fit a pattern of the short-term and longer-term exposure risk being somewhat in proportion, whereas for other rooms the risk of exceeding 800 ppm for more than an hour can range from 0.1 to 0.9 without a risk of exceeding 2000 ppm in 15 minutes. This implies different temporal structures in the data implying different usage and ventilation characteristics.

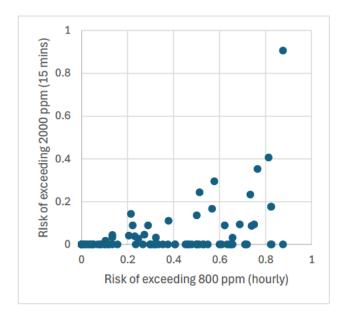



Figure 3-4: The daily probability of exceeding an 800 ppm (1 hr) and 2000 ppm (15 mins) threshold for each room in the study.

#### 3.2.3 Results by building type/function

Figure 3-5 indicates the distribution of risk calculation results for rooms clustered by building type/function. Care should be taken to interpret this figure as the number of rooms in each type varies across types. Broadly it can be seen that risk appears to be higher in gyms and education spaces, and lower in offices and churches. Libraries and aged care facilities (and to a lesser extent healthcare and veterinary spaces) appear to prese it a low risk of exceedance of the acute 2000 ppm threshold, but a much higher risk of exceedance of the longer-term 800 ppm threshold.

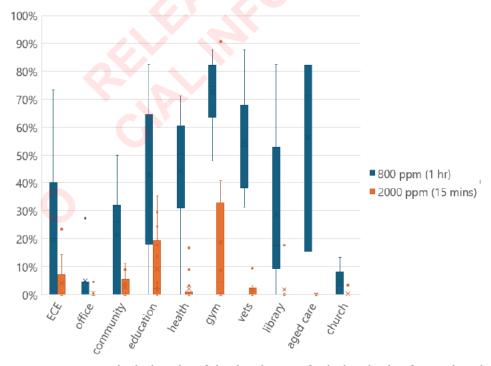



Figure 3-5: Box-and-whisker plot of the distribution of calculated risks of exceeding the short- and longer-term thresholds for each building type.

#### 3.2.4 Cluster analysis of CO<sub>2</sub> data

We conducted a k-means cluster analysis on the results for risk of exceeding the 800 ppm (1 hr) and 2000 ppm (15 mins) thresholds for the 99 rooms. This analysis identified 5 clusters, illustrated in Figure 3-6. The main features of rooms in each cluster are described below.

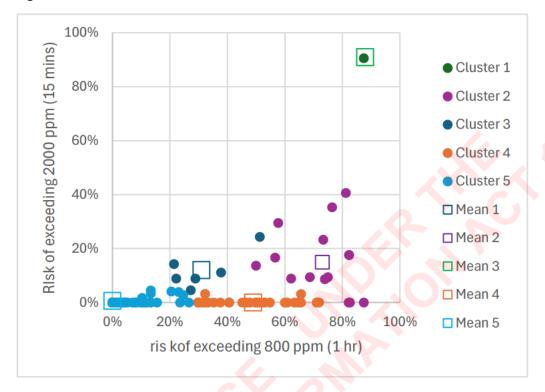



Figure 3-6: Result of k-means cluster analysis.

#### Cluster 1 – High risk

Cluster 1 represents a high probability (near certainty) of CO<sub>2</sub> exceeding both 800 ppm for more than an hour and 2000 ppm for more than 15 minutes

This cluster had only one member – the "spin" room at a gym. This was a room of approximately 6 m  $\times$  8 m  $\times$  3 m (140 m<sup>3</sup> volume) full of exercise cycles and had no external windows.

The complete time series of CO<sub>2</sub> data from this room is shown in Figure 3-7, and Figure 3-8 shows each 24 hours' worth of data overlaid on the same plot. These plots indicate the following features:

- Very high CO<sub>2</sub> values were observed twice, both times on a Saturday. On both occasions CO<sub>2</sub> exceeded 2000 ppm at 08:15 and remained above 2000 ppm until 11:45 and above 800 ppm until 14:30.
- CO<sub>2</sub> concentrations above 2000 ppm were observed two or three times on most weekdays, at specifically repeated times (mainly around 6 am, 10 am and 6 pm)
- When CO<sub>2</sub> did exceed 2000 ppm during weekdays it tended to do so for less than an hour.
- When CO<sub>2</sub> exceeded 800 ppm during weekdays it tended to do so either for 90 minutes, or for 2 3 hours.

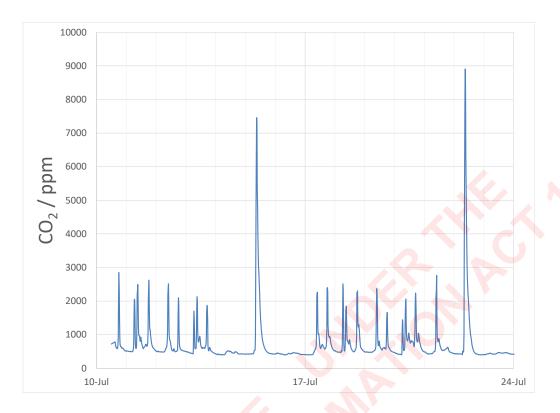



Figure 3-7: Time series of CO<sub>2</sub> from the "Spin" room - the only room in the High-Risk cluster.

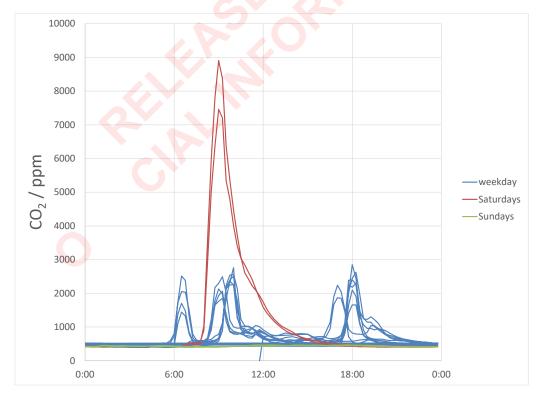



Figure 3-8: Each days' time series of CO<sub>2</sub> from the "Spin" room - the only room in the High-Risk cluster - overlaid.

From these observations, the following can be inferred. This room was most probably used for short, scheduled periods of intense exercise giving rise to rapid increases in  $CO_2$  (from background to over 2000 ppm in 30 minutes or less). It appears that the room was vacated after an hour of use each time. We suspect that ventilation was more powerful on weekdays compared to Saturdays, explaining the relatively rapid drop in  $CO_2$  on weekdays as the vacated room was ventilated, compared to much higher peak concentrations and much slower recovery on Saturdays. A post-usage "shoulder" of an extra hour of  $CO_2$  above 800 ppm was observed on some occasions. A sensor on the spin room door confirmed that the door was only opened at the beginning and end of the room being used, so the difference in  $CO_2$  between weekdays and weekends cannot be explained by changes in the use of the door. The presence of higher  $CO_2$  values in other rooms within the gym after the spin room was used implies that this additional  $CO_2$  was most likely delivered to the spin room other rooms via the ventilation system.

Although we have labelled this cluster as "high risk" this term should be taken as relative to the dataset as a whole. Although this room presented the highest probabilities of  $CO_2$  concentrations of both 800 ppm and 2000 ppm occurring in any given day, in this case these concentrations tended not to be sustained for too long. This centre was one of the few in the study t at had a functioning mechanical ventilation system, most clearly evidenced by the relatively rapid falls in  $CO_2$  on weekdays. The other three rooms in this centre ("circuit" room, a "yoga" room and the main gym) had lower risks of exceeding 2000 ppm (41 %, 9 % and 0 % respectively) but similar risks (72 – 88 %) of exceeding 800 ppm. We speculate that this variation was related to either the size of each room or the intensity of exercise being undertaken, or both. The large difference in performance between rooms and between weekdays and weekends show how sensitive the air quality risk is to the performance and tuning of the ventilation system. We were not able to investigate whether supplementary ventilation actions (door openings, use of fans) would have had a significant impact on  $CO_2$  levels.

#### Cluster 2 – Moderate acute but high chronic risk

Cluster 2 represents a moderate probability (10 - 41 %) of  $CO_2$  exceeding 2000 ppm for more than 15 minutes, coupled with a high p obability (50 - 88 %) of  $CO_2$  exceeding 800 ppm for more than an hour.

15 rooms made up this c uster. 4 were rooms within gyms, and 4 were classrooms, which is a higher proportion than would be expected by chance. Two were consultation rooms within clinics and 2 were rooms in veterinary surgeons, one was in a library, and one was a sleep room in an Early Childhood Centre.

This cluster was characterised by relatively rapid rises in  $CO_2$  when the room was occupied, but with the rise being interrupted and reversed, often repeatedly. This would be caused either by the room being regularly vacated (or occupancy reduced), or by ventilation being increased (doors and/or windows kept open) as the day progresses.

Figure 3-9 and Figure 3-10 show an example from this cluster where changes in occupancy are scheduled into the typical day, in this case a school classroom (for clarity only weekdays are shown). The following features can be observed:

- CO<sub>2</sub> rises rapidly at the same rate at the same time each day (approx. 08:45) indicating the arrival of students and consistent ventilation settings at the start of the day (most likely doors and windows closed).
- The rise in CO<sub>2</sub> is arrested and usually falls at different times on different days, but frequently at around 10:15 and again around 12:30, and again at 15:00.
- CO<sub>2</sub> frequently starts to rise again at both 11:30 and 13:30.
- These timings broadly correspond to the timing of morning tea and lunch breaks in this school.
- On two days (12<sup>th</sup> and 22<sup>nd</sup> September) these breaks occurred later, and/or were shorter or less effective. This may be due to bad weather reducing the number of children leaving the room, for example. One can extrapolate and speculate that if the refresh break never occurred, CO<sub>2</sub> could have risen to 2500 ppm or more in this room.

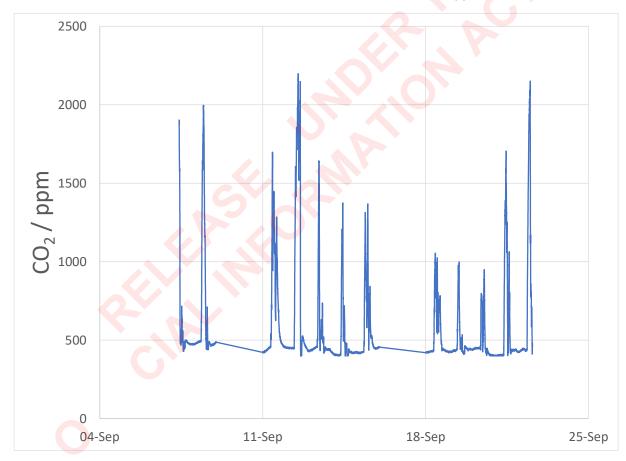



Figure 3-9: Time series of CO<sub>2</sub> from a classroom in cluster 2.

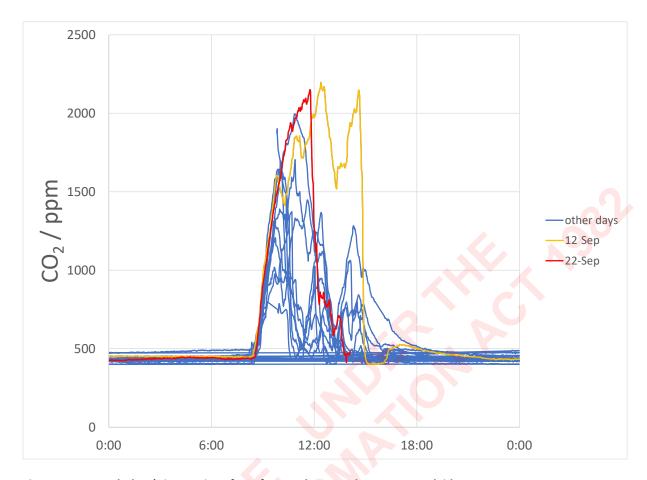



Figure 3-10: Each days' time series of CO<sub>2</sub> fr m a clus er 2 classroom overlaid.

In cluster 2 examples, the rise n CO<sub>2</sub> was ar est d well before the room had reached a steady state. This means that without the break in occupancy (or increase in ventilation, CO<sub>2</sub> would have continued to climb. This makes air quality in cluster 2 rooms, especially later in the day, quite sensitive to the room usage patte ns and ventilation actions of the occupants.

#### Cluster 3 – Moderate risk

Cluster 3 represents a low-moderate probability (5 - 24 %) of CO<sub>2</sub> exceeding 2000 ppm for more than 15 minutes, coupled with a slightly higher probability (21 - 51 %) of CO<sub>2</sub> exceeding 800 ppm for more than an hour.

6 rooms made up this cluster. They consisted of three community spaces, a classroom, an office and a sleep room in an Early Childhood Centre.

Figure 3-11 shows  $CO_2$  data from a member of this cluster – a relatively small consultation room in a community centre. Although at first glance concentrations seem low on most days, there are four clear peaks, all occurring on a Wednesday evening (Figure 3-12 showing one example). On each Wednesday  $CO_2$  rises consistently over 3 – 4 hours reaching a value of 2500 – 3800 ppm. Concentrations then fall slowly and approximately exponentially, indicating  $CO_2$  slowly leaking from an empty room, taking over 6 hours to flush clear. On the following Thursday evening,  $CO_2$  rises for no more than 2 hours before the rate of rise is curtailed. On Wednesday,  $CO_2$  stops rising around 10 pm. The difference in  $CO_2$  between Wednesday and Thursday is quite dramatic but is explainable either by a) differences in occupancy, or – more likely given the small size of the room – differences in ventilation.

In general, cluster 3 rooms are characterised by occasional periods of usage accompanied by either adequate or inadequate ventilation, which may be as simple as whether a door or window is opened. Cluster 3 included relatively small rooms where doors (and possibly windows) may be kept closed to reduce noise or maintain privacy, such as consultation rooms and sleep rooms.

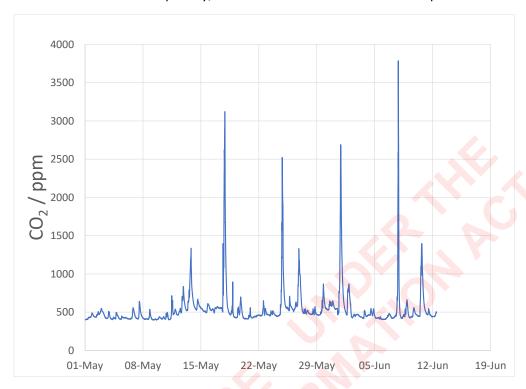



Figure 3-11: Time series of CO<sub>2</sub> from a room in cluster 3



Figure 3-12: 48-hours time series of  $CO_2$  from one Wednesday and Thursday in the consultation room example from cluster 3.

#### Cluster 4 – Low acute but moderate chronic risk

Cluster 4 represents a very low probability (0 - 3 %) of  $CO_2$  exceeding 2000 ppm for more than 15 minutes, coupled with a moderate probability (30 - 72 %) of  $CO_2$  exceeding 800 ppm for more than an hour.

33 rooms made up this cluster, therefore accounting for a third of all rooms. They covered all types of room in the study except churches and offices. Healthcare and veterinary spaces were disproportionately represented.

The large membership of this cluster obscures the fact that there are several different patterns within the cluster. In general, however, this cluster represents rooms in which CO<sub>2</sub> will frequently exceed 800 ppm but is generally prevented from exceeding 2000 ppm. This can be due to:

- The room being regularly unoccupied
- The room receiving regular ventilation boosts (e.g. frequent door openings)
- The room being moderately well-ventilated for i s n rmal usage
- Ventilation is typically increased (e.g. window opened) after an hour or two of use

#### Cluster 5 - Low risk

Cluster 5 represents a very low probability (0 - 4 %) of  $CO_2$  exceeding 2000 ppm for more than 15 minutes, coupled with a low-moderate probability (0 - 27 %) of  $CO_2$  exceeding 800 ppm for more than an hour.

44 rooms made up this cluster, therefore accounting for nearly a half of all rooms. They covered all types of room in the study except gyms and veterinary spaces. Church and office spaces were disproportionately represented

It is reasonable to assume that these rooms were sufficiently ventilated relative to their use during the monitoring period. Whether this would remain so at all times depends on how representative the monitoring period was and the likely occurrence of more demanding conditions (e.g. higher numbers of occupants, higher breathing rates, colder or hotter weather disincentivising the use of openings for ventilation etc.)

#### 3.3 Observed changes in door and window usage

Although the opening/closing of some of the windows and doors in each room were monitored, it was not logistically feasible to monitor them all. Furthermore, there were recurring technical problems with many of the sensors meaning that many of the datasets contain significant gaps.

We are therefore unable at this point to present an analysis of changes in door and window usage. However, at the time of writing we are in the process of identifying those rooms where data coverage is sufficient to conduct this analysis. We intend to present results in a future update or addendum to this report.

### 4 Discussion

# 4.1 The state of ventilation in naturally ventilated buildings occupied by vulnerable persons

The analysis presented here gives an overview of air quality as observed in our sampled rooms over periods varying from 14 to 78 days randomly distributed through the year. In naturally ventilated settings we should expect ventilation behaviour to change with the seasons as building occupants respond to heat, cold, wind and rain. The knowledge of participating in a study that draws attention to ventilation behaviour and indoor air quality may have itself influenced ventilation behaviour in a way that varies from person to person. Furthermore, any changes in ventilation behaviour or perception induced either by participation or through the data feedback may also have had a t melimited effect. In all of these ways we are unable to ensure that our result are representative of either the buildings sampled, or other buildings not enrolled in the study

Conversely, the general impression of the Field Research Assistants was that most participants were busy people with their own tasks and responsibilities and that the impact of the observation itself on the results was likely to be minimal. This study was also not designed to test the longevity of any change in perception or behaviour – that will require a different study

Despite its large size, we believe that our dataset is still either too small or possesses too many gaps to robustly explain the observed state of air quality. The carbon dioxide levels observed represent the net outcome of multiple processes, many of which were not observed (temporal variation in occupancy, variation in breathing rates between occupant and in time, wind speed, indoor-outdoor thermal gradients, degree of openings between rooms and between indoors and outdoors, etc). To develop a mechanistic understanding of the determinants of air quality in these rooms will require a somewhat different approach in which more effort is paid to more fully observing ventilation behaviour and performance (e.g. the total opening area).

Despite this we feel that further insight may still be derived from extended analysis of data from those rooms where data coverage was more comprehensive and complete. In particular, the dataset collected may be articularly useful for the calibration and validation of simulation models which would allow the contribution of contributing processes and actions, like changes in ventilation or usage, to be explored and quantified.

# 4.2 The potential for improving ventilation through changes in ventilation behaviour

Overall we found our intervention approach to be ineffective. Figure 4-1 shows how the risk of exceeding the 800 ppm threshold for more than an hour was reduced in the intervention period by more than 1 day in 10 in 13, but increased by more than 1 in 19 rooms, and changed by less than 1 in 17 rooms.

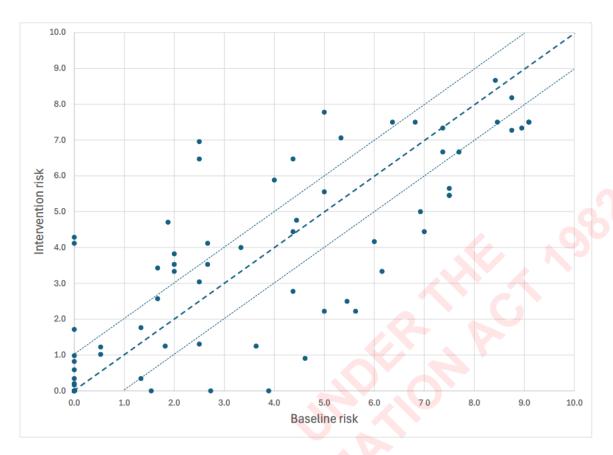



Figure 4-1: Scatter plot of risk of exceeding 800 ppm for more than an hour (days per 10 days) in baseline and interventions period.

However, we suspect this was mainly due to flaws in the design and inconsistent implementation, rather than any fundamental barriers. These flaws included:

- We were unable to prevent the participants being influenced by the knowledge that their behaliour was being observed
- We were unable to ensure that the participants being directly exposed to the intervention information would be the people with the agency and opportunity to act by changing ventilation
- It was very difficult to ensure consistency of messaging during the discussions. It was difficult to pre-script the proposed actions participants should take due to the unique design and usage of each building and the unique culture and varied level of understanding and agency amongst the participants. Our intention to promote discussion amongst participants turned out to be ineffective due to the varied authority structures in different centres.
- We could not ensure that participants were equally able to interpret the dashboard and calendar plots.
- Due to technical reasons, we were unable to "blind" the participants to the monitoring data during the baseline period, potentially influencing ventilation behaviour.

 Due to resource constraints only one dashboard was provided to cover 4 rooms. We could therefore not ensure that occupants of any monitored room were able to see or were aware of the dashboard.

Anecdotal evidence provided by the Field Research Assistants suggested that although participants generally considered the endeavour to be important and willingness to engage was high, their capacity to act was much more varied.

In our view, many of these barriers could potentially be overcome. Given the potential for very large gains in ventilation performance that could be achieved at relatively low cost we recommend an extended research focus on how to promote and facilitate pro-ventilation behaviour change in naturally ventilated buildings.

# 4.3 The potential for using carbon dioxide monitoring data to promote proventilation behaviour change.

Due to the above-mentioned limitations, and resource limitations we were unable to explicitly distinguish the role of carbon dioxide monitoring from other pro-ventilation messaging in inducing pro-ventilation behaviour change. However, in our opinion, informed especially by the conversations between Field Research Assistants and participants, we found that many participants expressed that they valued the carbon dioxide data, both in the form of the real-time dashboard and the calendar plots. Many participants told us how they responded to the dashboard turning yellow or red and were reassured if the indicator subsequently turned green. We found that with many participants the calendar plots required very little explanation before participants could draw patterns for themselves, linking persistent periods of elevated CO<sub>2</sub> to known activity patterns. This led many participants to suggest changes to room usage or ventilation settings unprompted by the research team.

### 5 Conclusions

# 5.1 What does this study say about the state of ventilation in New Zealand's naturally ventilated non-residential buildings?

In our sample of 31 centres, we found that CO<sub>2</sub> could exceed 800 pm for more than an hour (an internationally recognised threshold for compromised indoor air quality)

- at some point in 80 out of 99 rooms,
- on one day in 10 (on average) in 74 out of 99 rooms
- on 5 days in 10 (on average) in 31 out of 99 rooms
- on 9 days in 10 (on average) in 7 out of 99 rooms

We found that CO<sub>2</sub> could exceed the higher concentration of 2000 ppm for more than 15 minutes (an internationally recognised threshold for an acute air quality risk))

- at some point in 27 out of 99 rooms,
- on one day in 10 (on average) in 6 out of 99 rooms
- on more than 5 days in 10 (on average) in 1 ou of 99 rooms

Overall, data we would consider representing very poor air quality with a high risk was not observed.

Fewer than 10 rooms posed a moderately high risk. Thi group was characterised by the room being somewhat under-ventilated relative to the idea but being periodically ventilated more effectively, or by occupancy reducing or ceasing Examples included some classrooms where relatively poor ventilation during class time (especially in the morning) was compensated for by good ventilation (or at least the class being emptied) during break times. Other examples included rooms with regular door openings as customers/clients or staff regularly come and go. Such rooms will present a higher risk if these refresh breaks do not oc ur for whatever reason (e.g. inclement weather), or the duration between breaks increases.

Approximately a third of rooms posed a low-to-moderate risk in which either ventilation was closer to the ideal, or periods of low or zero occupancy were longer or more frequent.

Approximately a third of rooms had good air quality throughout the study.

There are many factors impacting indoor air quality and ventilation. This study did not yield a clear profile for the types of building, rooms, uses or infrastructure that would present the more important risk factors. However, we found that gyms and education spaces were slightly over-represented amongst those rooms with poorer air quality, whereas churches and offices were over-represented in the good air quality group.

# 5.2 What does this study say about the potential of behavioural intervention?

Our attempt to conduct a structured and deliberate behavioural intervention to improve ventilation practices was inconclusive. In our view this reflects flaws in the design, partly related to the difficulty

in constructing a design that was sufficiently adaptable to the wide range of buildings, workplace, social and ethnic cultures across the participating centres.

However, it was clear from the data that variation in ventilation practice produced wide variation in indoor air quality outcomes. In particular, the frequency and duration of door openings and the timing/frequency of window openings appeared to be the main factor determining whether on any given day, and for how long, carbon dioxide exceeded the risk threshold levels of 800 ppm and 2000 ppm. Although an extended analysis of this dataset is required to quantify these relationships, the analysis conducted to date is sufficient for us to confidently state that the potential for behaviour change to improve ventilation and indoor air quality and reduce risk is large.

# 6 Implications

## 6.1 Identifying spaces that require mitigation

Although far from comprehensive, our study implies that indoor air quality and ventilation performance in naturally ventilated buildings varies between buildings and between rooms within buildings in a way that may be predictable but also may not. It indicates that some rooms present a greater risk and may deserve to be prioritised for mitigation, but it may be difficult to identify such locations in advance. This implies several non-exclusive options:

- Adopt a precautionary approach and mitigate in as many settings as possible
- Develop a predictive screening approach to gather better suggestive evidence of high risk before prioritising rooms for mitigation
- Conduct screening monitoring to gather more robust evidence of high risk before prioritising rooms for mitigation

This study presents very limited evidence that education spaces may provide a higher risk. When the very large number of such spaces, and the very large exposed and vulnerable population, and their potential role as disease vectors in the wider community is considered, there appears to be a rationale for prioritising education spaces for mitig tio

## 6.2 Is low-cost behavioural intervention a viable mitigation approach?

In our view, the data collected in this study supports the idea that behavioural intervention provides a large potential for reducing risk at low cost. The remaining challenge is to realise that potential by inducing the required behaviour change.

In this study we were unable to properly study the process of behaviour change in this context. Within this project we found it easy to id ntify sufficient participants within each centre that were engaged with the issue and willing to act to improve ventilation. In principle people with such orientation may be common enough that they could form a critical mass who will embed new habits within their own buildings and promulgate good practice amongst their workplace colleagues and community and industry pee s

In our view the grea er challenge was the more building-specific understanding of exactly what behavioural change was required and when, and the provision of some form of feedback to give participants the reassurance that the new action was helpful or successful. It was also important to ensure the advice we gave was not inconsistent with other goals and objectives, such as the proper functioning of the centre, thermal comfort, or noise.

We also noted that whereas in some centres, communication and sharing of learning and changes in practice between staff and users happened effectively and rapidly, whereas in others this was not the case. In general, we found that fewer people attended the discussions with the research team than we had hoped, with often only a manager attending. This highlights that the manner in which motivational information such as instructions and feedback are communicated to the most appropriate people is a key feature that any mitigation approach must consider.

Nevertheless, although optimal ventilation behaviour will be specific to any given room and its usage, generic ventilation advice is still likely to yield substantial benefits. Through this study we repeatedly

found that participants under-estimated their agency and the degree to which a simple change in behaviour, such as opening a window early in the day, made a large difference to air quality. This implies that widely targeted public messaging, and messaging specifically targeting vulnerable or harder to reach groups in culturally appropriate ways, has the potential to both provide a kick-start to improving air quality, as well as laying a foundation for more targeted and detailed actions.

# 6.3 What might be an appropriate role for sensor-based monitoring?

Our study was not designed to establish the value added by the introduction of sensor-based monitoring. However, in our view such monitoring provides critical feedback to room occupants and managers on the consequences of their ventilation behaviour, i.e. it reveals their agency over this matter. Monitoring data provided centre managers information on where to target mitigations, whether it be the actions of certain staff, or changes to the scheduling and usage of rooms or changes to the ventilation infrastructure.

Overall, we found the carbon dioxide monitoring to be reliable and robust. However, there is an opportunity to develop the nature of data feedback further. Most existing room monitoring systems report carbon dioxide concentrations to users. This requires users to understand the meaning of these data and mentally translate this into an action. In our liew, in most settings, this last step rarely occurs, and the data is largely ignored. In this study we used a "traffic light" indicator with suggested actions. Our users reported that this war more informative and easier to act upon. However, it was unclear from our study whether the messaging should be more or less detailed, and more or less generic or room specific. Another weakness was the potential misalignment between who would see the dashboard and who needed to act on the information. Nevertheless, all of these limitations can be addressed through further experimentation and technological development.

In principle, more room-specific feedback could be provided by a more sophisticated monitoring system that collects sufficient information to build a simulation model of the room. Such a system would need to collect mole reliable and comprehensive information on the ventilation of the room, its occupancy levels and the activity levels of the occupants than was possible in this study. The potential advantage of such an approach would be to be able to judge the relative impact of different actions and make oplimised suggestion. In principle such a system could integrate heating, cooling and noise control objectives. The added value provided by such an approach, and its matching with applications where the indictional functionality makes a critical difference, should be the subject of future research.

# 7 Acknowledgements

The Science team consisted of Ian Longley, Gustavo Olivares and Elizabeth Somervell from NIWA.

The Field Research Team consisted of Daniel Morrish and Jade Arnold from NIWA and Asher Fai'ai and (for the pilot) Cinnamon Lindsay from Hapai Research (under the supervision of Felicity Ware).

The fieldwork at Kokiri Marae was conducted by Julie Bennet and Caroline Halley of the University of Otago.

This project was made possible by the kind permission and participation of all of the staff at the various study centres.